A16z | 状态陷阱:从Web2社交网络学习

  • 2022-09-04 10:00:29
文章作者:Sriram Krishnan
文章编译:Block unicorn

元宇宙                 NFT头条                  A16z | 状态陷阱:从Web2社交网络学习


随着越来越多的人在加密货币领域探索社交,我发现自己经常谈论什么使社交网络发挥作用,有时甚至不发挥作用。一个关键的对话是围绕着状态,以下是我从web2时代学到的一些经验和教训。

社交网络倾向于提升那些有望获得关注的内容。这样做可以刺激特定类型的行为,为执行该行为的用户提供地位。一般来说,有一个状态指示器,人们必须努力积累。它以各种形式出现——点赞、关注者/喜好计数、经验值、认证徽章、排行榜等等。

对上述方法的简单实现通常会导致一个致命的缺陷——将状态集中在少数“状态丰富”的用户身上,大部分“状态贫乏”的用户离开,从而导致新用户体验不佳。虽然这样做可以在短期内实现价值最大化,但从长远来看,这是一个糟糕的策略,因为新用户无法进入,最终整体网络质量会下降。

首先,你如何在一个网络中建立地位模型?基尼系数通常是对财富不平等的衡量:数字越高,不平等就越高。对于社会网络,我们可以把它作为相对地位分布的衡量标准,并把你的网络的地位指标(追随者/Karma/等等)作为财富。
换句话说: 你的一小部分用户是否拥有巨大的地位?
这让我想到了一些关于社交网络设计的个人观点,以及社交网络构建者应该如何把自己更多的视为经济政策的模型。

1. 大多数社会网络在默认情况下都倾向于向高地位不平等(高基尼系数)倾斜。

2. 如果你的社交网络有很高的不平等,你将很难留住新来者。

3. 拥有高地位的流动性是任何有活力的社交网络的关键,即使你的目标不是为了增加你的整体用户群。

高度不平等会带来哪些新问题?
最简单的理解就是地位=资本。你希望资本四处流动,寻找健康的行为,而不是被锁起来,或与健康的行为相冲突。为什么?
1. 新用户模仿不健康的行为: 你的最高地位用户已经知道如何玩地位游戏——他们知道如何获得数百万粉丝/回答最多的问题/采取行动赋予他们地位。然而,你可能不希望你的新用户以这种行为为榜样,社交网络中的模仿,自然会对你不利。
让我们以目前的Twitter为例:你可能已经注意到现在很多推文都只是线程(你见过多少次 “一个推特线程1/37…?)虽然这可能是某人获得第100万个粉丝的方式,但这绝对不是你希望你的新用户尝试做的事情。
2. 人们不想玩无法获胜的游戏: 当一个新用户出现在社交网络中,一旦他们了解了基本机制,他们就会积累一些初始状态: 他们的第一个粉丝,他们的第一个业绩,他们的第一个积分。然后他们会查看全球排行榜,或者看看他们最喜欢的名人有多少粉丝,或者更糟,他们的同龄人有多少 Karma列表。如果他们看到一个人有无数的 Karma列表,而他们又没有办法接近他,他们就会灰心丧气,转而使用其他更容易的方法。
当你必须制作内容时,社交网络就有了一个尖锐的版本——没有人想要发布一个视频/文字/照片,并且与正常情况相比,它没有得到任何回应。
探索如何玩游戏/赢得地位游戏是人类的天性,如果你的用户认为你的社交网络太难玩,或者已经被某些人赢了,他们就会转向其他游戏。
3. 地位邻避主义:当你有一个地位很高的群体时,他们通常会试图阻止新来者获得地位。
当熟悉某个网络 “ Meta ”、不喜欢改变的当前用户提出抗议时,你经常会看到这种情况。你经常会得到高地位的群体,他们会一起合作,如果没有高地位的流动性,他们就会把新人拒之门外。
这样的例子不胜枚举,1993年9月的各种变化也不胜枚举。还记得Instagram用户抗议该应用在Android上发布的时候吗? 或者最近,Instagram将焦点从照片转移到短视频上。随着收集地位的手段的变化,这些将继续发生。
怎样才能减少地位的集中,鼓励地位的流动?
1. “普遍基本地位”: 一个常见的机制是给予新来者临时的地位提升,这通常是通过控制分配和奖励的算法杠杆来实现。

如果你在任何流行的社交平台上注册一个新账户,你可能会注意到这一点。你的内容会得到更多的推荐,你会在朋友建议中得到更多的提升,这种效果会随着时间的推移而减弱。

有多种方法可以将这些机制构建到网络中。/strong>

  • 临时提升状态: 在关键时刻分配一个临时提升状态—例如:当某人新加入一个网络/当他们离开一段时间后回来/执行一个关键的期望动作。
这种提升通常是通过算法,让内容有更多的机会被看到,或者让新人与之互动(”X刚加入,打个招呼!”)。在每一种情况下,你都在 “提高 “某个新人获得积极体验的机会(并产生成本,因为这种提高必须以其他人为代价)。
  • “ 公平 ” 分配状态: 通过一些“公平”算法,将状态信号分发给网络中的用户。例如,建立一种算法,通过人来决定谁应该出现在任何推荐页面上。这是使用倒序排列供给的理由之一——每个人都有公平的机会让自己的内容被看到。
注意:地位必须有内在的稀缺性概念才有意义。如果你在分发地位,你就会造成通货膨胀,并可能意外地导致你的地位信号贬值,你不可能在没有副作用的情况下 “复制”新的地位。
2. 让地位变得模糊:另一种缓解方法是淡化所有地位的指标,让人们去寻找它。通过模糊地位,你便能够提供给自己更多选择,让玩家专注于真正的游戏/应用机制,而不是地位机制。
近年来,你可以看到这方面的例子。Instagram试图隐藏给帖子点赞的人数,TikTok则淡化关注者数量。所有这些模糊状态的变化都有助于缓解这种影响,以及它们存在的其他原因。这种方法的缺点是,如果你的社交网络是关于地位的,没有指示器,人们可能不知道他们在玩什么“游戏”。
3. 设置具有相似地位水平的人群组: 如果你玩过任何主流竞争游戏,你就会熟悉“排名”游戏(通常是ELO评级)的概念,即游戏试图将你与具有相似技能水平的人组合在一起,所以你更有可能获得具有挑战性但并非不可能的体验。类似地,约会应用程序经常试图用ELO(排位分数机制)式的机制将人们划分为具有相似“吸引力”的人。
对于社交网络来说,创造优秀新用户体验的一种方法便是提供一种“排名”体验,即他们能够接触到整个图的子集或与之互动。例如,一个子Reddit,而不是每个人都在Reddit上竞争。
4. 重置或衰减状态指示器:对抗状态集中的一个激进措施是让每个状态指示器随着时间的推移而衰减——这是对状态指示器的一种通货紧缩措施。

例如,业力会随着你离开网络的时间越长而衰减,或者随着时间的推移而失去关注者(特别是如果你因为在早期建议用户名单上而获得了大量的追随者)。

据我所知,没有人真正尝试过这种逻辑上的极端版本:定期将所有状态指标设置为零,并从头开始重置网络,这可能是一个有趣的实验。

5. 重置 “ Meta ”: Instagram和Youtube转向短视频引起争议的一个原因是他们 “ 重置Meta ” ——这是任何地方的玩家都熟悉的概念。这样做,结合上述机制之一,动摇了流动性,并改变谁可以在你的网络中获得地位。
意外地造成状态问题
社交网络经常意外地遇到难以解脱的状态问题。
偶然的地位恶性通货膨胀: 地位与稀缺和/或较多的“工作证明”密切相关。引爆你的社交网络的一种常见方式是,利用迄今为止稀缺或难以获得的地位信号,让它在一夜之间广泛传播,而不考虑下游的影响。在很多这样的情况下,你要么摧毁了网络,要么让人们通过你意想不到的其他方式来了解状态。
这与高度不平等有什么关系?你经常看到网络试图这样做来对抗不平等(无奈在网络发声,瞬间得到巨大的关注),结果通过贬低一个关键的奖励机制来制造更糟糕的问题。引用《超人》中的一句话:”如果每个人都是超级英雄,那么没有人是超级英雄”。
高地位的意外指标: 一个相关的问题是,在你不打算的情况下,意外地引入地位指标并造成不平等。
我最喜欢的例子是社交网络上的 “已验证 “徽章。虽然最初的意思是 “这个人实际上是他们所声称的X人”,这是一项旨在打击冒名顶替的措施,但是所有网络最初可能需要”知名人士”(阅读:在某种程度上有名)推广。哎呀!因此,导致他被广泛理解为 “这个人是世界上著名的人”,这是每一个网络至今都在努力争取的东西。
加剧地位不平等: 幼稚的执行发现、排名或地位的一个常见陷阱是无意中阻止新来者 “ 加入”。

任何社交经验都具有注意力或展示机制,需要将相对地位考虑在内。一个幼稚的“建议”feed或“顶级用户”可能是基于关注者数量对内容进行排名——确保拥有大量关注者的人获得更多浏览,而平台上的新用户永远不会感到被发现。通常情况下,这种幼稚的实现会加剧不平等,让新人不可能爬上地位的阶梯。

通常情况下,这种幼稚的实现会加剧不平等,让新人不可能爬上地位的阶梯。

正如Eugene Wei敏锐地指出的那样,你可能犯的最大错误是不承认社交网络的核心是“ 社交资本 ”。了解资本是如何创造、交易和消费的,将决定你的网络的成败。这样做可能意味着你的角色更多的是一个政策制定者/经济学家,而不是传统的产品制造者/工程师。

如果觉得文章好看,你可以将Block unicorn 标注星标和添加桌面。


本文提供的信息仅用于一般指导和信息目的,本文的内容在任何情况下均不应被视为投资,业务,法律或税务建议。对于根据本文做出的个人决定,我们不承担任何责任,我们强烈建议您在采取任何行动之前进行自己的研究。尽管已尽最大努力确保此处提供的所有信息都是准确的和最新的,但可能会发生遗漏或错误。

元宇宙                 NFT头条                  A16z | 状态陷阱:从Web2社交网络学习

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注